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OPTIMIZATION  OF  INSERTION  COST 
FOR  TRANSFER  TRAJECTORIES 
TO  LIBRATION  POINT  ORBITS 

R. S. Wilson,* K. C .  Howell,+ and M. W. Lo 

Abstract 
The objective of this work  is the development of efficient  techniques  for  pre- 
liminary  optimization of the  cost  associated  with  transfer  trajectories to libra- 
tion  point  orbits  in the Sun-Earth-Moon  four  body  problem;  such  transfers 
may  also  include  lunar  gravity  assists.  Initially,  dynamical  systems  theory  is 
used to determine  invariant  manifolds  associated  with the desired  libration 
point orbit. These  manifolds  are  employed to produce an initial  approxi- 
mation to  the transfer trajectory. Specific trajectory  requirements  such as, 
transfer  injection  constraints,  inclusion of phasing  loops, and targeting of 
a  specified state on  the  manifold  are  then  incorporated  into the design  of 
the transfer  trajectory. A two  level  differential  corrections  process  is  used 
to produce  a  fully  continuous  trajectory that satisfies the design  const,raints, 
and  includes  appropriate  lunar  and  solar  gravitational  models.  Based  on this 
methodology,  and  using the manifold structure from  dynamical  systems  the- 
ory, a technique  is  presented to optimize the cost  associated  with  insertion 
onto a specified  libration  point orbit. 

INTRODUCTION 

Based  on recent successes, a number of missions have lately  been  proposed that  aim  to 
take  advantage of the growing scientific interest  in the region of space near  the  libration 
points  in  the  Sun-Earth  system. To support missions that include increasingly complex 
trajectories  and  incorporate  libration  point  orbits, more efficient techniques and new de- 
sign philosophies must be considered. Typically, the first challenge in  the design process to 
support a libration  point mission is the numerical determination of the periodic  or  quasi- 
periodic  orbit  (i.e.,  the  halo  or  Lissajous  trajectory)  that serves as the  operational  base  to 
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meet the scientific objectives of the mission. Design capabilities for these  types of trajec- 
tories  have significantly improved in the last few years,  and  baseline  concepts derived from 
solutions in a three-body regime have been successfully exploited, since the first libration 
point mission in  the  late 1 9 7 0 ' ~ . ~ ~ '  

Determination of a nominal halo or Lissajous trajectory is only one  part of the design 
process, however. Transfer  trajectories  to  and from this region of space  must also be con- 
sidered. For any  trajectory  problem,  the  ultimate goal is an  analytical  solution  (or,  at 
least,  an  analytical  approximation): however, there  has yet to  be  any significant progress 
in generating a closed form  solution for transfers  to  and  from  the vicinity of the  libration 
points. Frequently, the nominal halo or Lissajous trajectory is computed  in  conjunction 
with  the  transfer  path, using straightforward  propagation  from Earth  launch  conditions. 
A more optinlal  approach involves the  initial  identification  and design of a particular halo 
or Lissajous trajectory  to closely match  the specifications of the mission; then,  the  best 
transfer  path from Earth, or the most useful trajectory  arc  to or from  another  point  in  this 
region is determined.  (This  latter  approach is, in fact,  crucial  to the success of the  trajectory 
design for the  upcoming Genesis sample  return mission." Since the  return  to  Earth places 
conditions  and  constraints  on  the  nominal Lissajous trajectory,  it is absolutely necessary 
that  the launch leg  is computed  independently of the  libration  point  orbit  and  return  tra- 
jectory.) The recent introduction of certain  aspects of Dynamical  Systems  Theory  (DST) 
as a means of dynamical  analysis  and design in the  three-body  problem is motivated,  in 
part, by the  absence of any  analytical  tools for the  computation of transfer  trajectories,  and 
by the  requirement  to  determine  Earth-launch-to-halo-orbit  transfer  paths  in  the  context of 
the  three-body  pr0blem.~3~*-~~  The previous trial-and-error  numerical  search  methods have 
clearly been successful in the  past  to  compute  these  launch  segments,  but more efficient 
procedures that exploit knowledge of the dynamics  are  desirable.  Application of DST in 
the  circular  restricted  three-body problem yields a relatively fast method for generating a 
number of different types of trajectories  to  and from halo orbits, e.g., transfers between 
Earth  and  halo  orbits, as well as, transfers  between  halo  orbits in the vicinity of different 
libration  points. An additional benefit of DST is a better  understanding of the geometry 
of the phase  space;  this knowledge  allows mission designers to  obtain valuable insight into 
the  behavior of solutions in this region of space. 

Given an  appropriate  libration  point  trajectory,  the  additional  information  that a halo 
orbit in the circular  restricted problem possesses one-dimensional  stable manifolds, allows 
an  initial  estimate of a path from Earth  to  the  periodic halo to  be  determined.  This  initial 
approximation is ultimately used to  generate  an  Earth-to-halo  transfer  that closely reflects 
a manifold path,  but in  the more  complex  model that represents  the "real" solar system. 
It has been  shown previously that  there exist stable manifolds that pass close to  the  Earth 
prior to  an  asymptotic  approach  to  the halo or Lissajous  trajectory  in  the vicinity of a 
libration p ~ i n t . ~ ? " - ~ ~  The point along such a stable manifold that represents  the closest 
approach  to  the  Earth serves as an ideal location for the  insertion  maneuver from Earth 
launch.  Unfortunately,  the state on  the manifold path  at closest approach  rarely meets 
the  constraints  associated  with  actual  launch  conditions. Given the  stable manifold (or 
other  appropriate  approximation),  the goal then becomes the  determination of the  optimal 
location  and  magnitude of an insertion  maneuver to successfully place the spacecraft  on a 
path  to  complete  the  transfer  into  the  libration  point  orbit. A methodology  to successfully 
generate a suitable  transfer that does,  in  fact,  accomplish  the  task of inserting  the  spacecraft 
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into  the  libration  point  orbit is  now a ~ a i l a b l e . ’ ~ ~ ~ ~  The goal, then, of the  current work  is 
the  extension of the previous procedure  to  produce a transfer  path  that is more optimal 
in terms of insertion  cost. A secondary, perhaps equally important goal, is the  additional 
understanding of the  dynamics  in  this region to  support  future  error  analysis  studies.  In 
the following discussion, the procedure  to  produce  the baseline transfer is presented  first. 
Then,  the  extensions  to  the process to  obtain more cost effective results  are discussed and 
implemented in the  algorithm. A number of examples  are  presented  to  demonstrate  the 
application of this  technique  and  its  impact  on  the  insertion  maneuver. 

BACKGROUND 

Stable  Manifolds 

The procedure  to  determine a suitable  transfer  trajectory  begins by examining  the  un- 
derlying  structure of a given libration  point  orbit  (LPO) using dynamical  systems theory. 
From DST,6110>13 it is known that  the  stable  and  unstable  manifolds  associated  with PC- 

riodic and  quasi-periodic  solutions  (such  as  libration  point  orbits) define subspaces  in  the 
six-dimensional  phase  space  (position  plus  velocity). The concept of a manifold is simply 
a collection of orbits  that  start  on  a surface (i.e.,  in a subspace)  and  stay  on  that surface 
throughout  their  evolution.  The  computation of the  stable  and  unstable manifolds corre- 
sponding  to a periodic halo orbit in the  circular  problem is associated  with  properties of 
its monodrorny matrix. Since the monodromy matrix possesses one stable  and one unsta- 
ble eigenvalue, the  corresponding manifolds are one-dimensional in the  phase  space.  The 
one-dimensional  stable  and  unstable manifolds, then,  are  approximated by the correspond- 
ing eigenspaces, and  can  be  computed  at various points along the periodic  orbit.  This  set 
of one-dimensional manifold paths  taken  together,  generates a higher dimensional surface 
that approaches or departs  the reference orbit. Moreover,  these manifolds appear  as two- 
dimensional  surfaces  when  projected  onto  three-dimensional  configuration  space  (position 
only). An  example of a section of one of these surfaces in an L1 centered  rotating  frame 
appears  in  Figure 1 for stable manifolds associated  with  an L1 Lissajous  trajectory.15 Ini- 
tially, the manifold surface  contracts as the manifolds approach  the  Earth  from  the  bottom 
of the figure. (The surface is “twisting”  as  it  wraps  around  the region near the  Earth  on  the 
right  edge of the figure.) After passing the  Earth,  it  expands before contracting again as it 
approaches  the  libration  point  orbit. As time increases, the manifold  surface  approaches the 
LPO and, in fact, is virtually  indistinguishable  from  the  Lissajous  trajectory;  this is consis- 
tent  with  the  asymptotic  nature of the manifold structures.  States  that reach any  point  on 
this  surface will asymptotically  approach  the Lissajous orbit as they evolve, provided that 
each of the  elements of the  state  equals  the  corresponding element of the seven-dimensional 
state  (position, velocity, and  time)  on  the manifold at  the specified point. 

To develop a usable approximation for an Earth-to-halo  transfer, a single trajectory 
is selected along the surface representing  the  stable manifold. The  trajectory must  pass 
appropriately close to  the  Earth,  and may  include a lunar  encounter, if desired.  This 
solution serves as the  initial  approximation  to  the  transfer from the vicinity of the  Earth  to 
the  libration  point  orbit.  In  general, however, the  Earth close approach will not satisfy the 
necessary t?ransfer trajectory  injection  (TTI)  constraints, such as altitude  and/or  inclination, 
nor will it  include  phasing  orbits.  Thus,  the  methodology  described in Howell et a1.,l0 
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Figure 1. Portion of the Stable Manifold Projected  onto Configuration Space 
(Courtesy: Brian Barden,  Purdue  University) l5 

Miil~on,'~  and Howell and W i l ~ o n , ~ " , ' ~  is enlployed to enforce the  constraint  conditions  that 
will exist  at  the  predetermined  transfer  injection  point;  it also allows the inclusion of any 
desired number of phasing loops to set up a lunar  encounter. Of course, the methodology 
must  then  determine  the maneuver required to  match  the  state defined on  the  manifold. 

Two-Level Corrections Process 

This general procedure is essentially a two  level differential corrections scheme. First, a 
final target  state  from  an  appropriate single trajectory  on  the manifold  surface is selectcd. 
(Recall that  the  stable manifold of choice  is the one that passes closest to  Earth, or is 
otherwise  determined  to provide a reasonable target for the  transfer  path.)  The  transfer 
tra.jectory is then defined as  the  path from the  transfer  injection  point  to  the final target 
point  on  the numerically determined path  that  approximates  the  manifold.  This  initial 
approximation  to  thc  transfer tra.jectory is discretized into a series of target  states  (also 
called patch  points) along the  path. Between consecutive patch  points, a simple differential 
corrector is  used to  ensure  position  continuity  at  the final point, by varying the velocity at 
the  previous  state.  Application of this first level corrector  results  in a complete  transfer that 
is continuous  in  position  and  time,  but may have velocity discontinuities  at each patch  point. 
Based on these velocity discontinuities,  as well as any constraint  violations, a set of position 
and  time  corrections  are deternlirled for each target  state along the  trajectory.  These  state 
changes are  applied  concurrently  to  the set of target  states  describing  the  transfer  path,  and 
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the level one  corrector is again used to enforce position  continuity  throughout  the new set 
of target  states;  this  constitutes  the second level of the differential corrections  procedure. 
This two-step iterative process ultimately  leads  to a trajectory  that is fully continuous  in 
position  and velocity (with  the possible inclusion of deterministic  maneuvers)  and satisfies 
all constraints placed on  the  solution  (such as initial  inclination,  altitude, or final state 
targets).  Further  details  on  this methodology are available in various  reference^.'^,'^,^^-^^ 

This  methodology is now specifically applied to  the transfer  problem  in  which  the specific 
single trajectory  that  asymptotically  approaches  the  libration  point  orbit is pre-determined. 
Thus, a series of target  states  are selected along the  trajectory  that numerically represents 
the  desired  stable manifold, and a final state is identified to serve as a first guess for the 
target  point  at  the  end of the  transfer.  The fixed position  and  time  corresponding  to  this 
final state on  the manifold surface are  targeted by the two  level differential corrections 
process to  produce  the  complete  transfer  trajectory.  In  order  to precisely approach  the 
desired libration  point  orbit,  the final state on  the  transfer  must,  in  fact, lie on  the surface 
that is representative of the  stable  manifold.  The  position  and  time  requirements  associated 
with the final state  are met by this differential corrections  procedure, however, the velocity 
state is not  constrained in the solution process. Therefore, a maneuver is required  to correct 
any velocity discontinuity  between  the velocity along the  transfer  at  arrival  and  the required 
velocity state on  the manifold. This maneuver arises because only position  and  time  are 
targeted  during  the  corrections process, and is denoted  the  Libration  Orbit  Insertion or 
LOI. Once the  state of the vehicle  is actually on the  representative  surface,  it  approaches 
the  libration  point  orbit,  asymptotically.  This  completes  the  transfer  from  Earth  to  the 
LPO with,  theoretically, no additional maneuvers. 

METHODOLOGY FOR OPTIMAL LO1 SELECTION 

Utilizing the procedure  detailed  above,  the final target  state is pre-determined  to  be 
on the surface representing  the manifold, and,  thus,  results  in a transfer  that  approaches 
the LPO, but may or may not correspond  to a solution  with an acceptable LO1 cost. 
A methodology is sought  to allow this “fixed” LO1 target  state  to vary along the two- 
dimensional  surface  to  minimize  the  required  insertion  maneuver, so that  the resulting 
transfer  trajectory  still  inserts  onto  the  same  surface  and,  hence,  approaches  the desired 
libration  point  orbit  asymptotically. Schematically, this is depicted  in  Figure 2. Initially, 
the  final  target  state X a c t  = (&t, tact) for the  transfer lies on  the  desired manifold surface 
in  position  and  time,  but requires some  associated LO1 cost (i.e., arrival AV,) to achieve the 
seven-dimensional manifold state  that will approach  the  libration  point  orbit.  (Note  that 
subscript N denotes  the final target  state along the  transfer  path.) Based  on this velocity 
difference (AV,), a change in the  position  and  time  elements of the  arrival  state, A X  = 
(ARN, At,), is calculated  to reduce the  magnitude of the  required  maneuver. Ideally, since 
all points on the manifold  asymptotically  approach  the  libration  point  orbit,  this process 
simply seeks to  shift  the final target  to any point  on  the  representative  manifold that 
results in a lower LO1 cost. Computation of this shift  in the  state is based  on the following 
sensitivity  partials,’* 
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Figure 2. Stylized  Representation of Manifold Targeting Procedure 

where the  subscript N - 1 corresponds  to  the  target  point  immediately  prior  to  the final 
state,  and V N  and l i ~  rcpresent  the velocity and  acceleration vectors corresponding  to 
the final target  state N .  The  matrices A N - l , N  and BN-l,N are 3x3 submatrices of the 
state  transition  matrix  relating changes in  the  state  at N - 1 to changes  in state N .  A 
more  complete discussion of these  partials  and  their  application  in  the two  level differential 
corrections process can  be found  in Wilson,14 and Howell and Wils0n."1'~ 

Applying the position  and  time  corrections, A X ,  to  the  original  target  state X a c t  results 
in  a new final state X d e s  that, in all likelihood, does not lie on the  required surface. This 
condition  results, of course,  because rrlanifolds represent  solutions to  the nonlinear  equa- 
tions;  but  the  corrections scheme is an inherently  linear process. To compensate,  this new 
final state is projected back onto  the manifold surface;  another  state X, , , j  is then  obtained 
that does lie on the  desired  surface,  and  therefore, is an  acceptable final target  state. A 
new transfer is determined  to  this new LO1 location that should  require a smaller  maneuver 
to  insert  onto  the manifold. This  iterative process is repeated  until some  minimum cost is 
achieved. 
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ONE  DIMENSIONAL VARIATIONS ALONG THE MANIFOLD 

As an  application of this methodology, consider the  variation of the LO1 target  state 
along a single manifold trajectory.  In  this case, the “surface” is,  in fact,  one-dimensional, 
corresponding  to a single one-dimensional stable manifold that is identified as  an  acceptable 
path  to  the LPO. Some LO1 target  state Xact along the one-dimensional  trajectory is 
selected and  the  transfer is computed  to meet the desired position  and  time  at  the fixed 
transfer  end  state. Given the cost associated  with  this  computed  solution,  corrections in 
the final state (AX)  are  determined using Equations (1) ~ (4)  that  reduce  the velocity error 
at arrival. This  update  to  the  state is added to  the previous final target  point  to  produce 
a new final target  state X d e s ;  however, this  point  no longer lies on  the  desired manifold 
trajectory. 

By projecting X d e s  onto  the  representative one-dimensional stable  manifold, a new final 
target  state X,,, is determined.  This  projection is computed by minimizing the  distance 
from the desired target, X d e s ,  to some  point along the  actual  trajectory.  Once  the new 
LO1 target  state is determined from X,,,j, a new transfer is computed using the previous 
solution  as  an  initial guess. A new  LO1 cost is computed  and  the process is repeated  until 
some  minimum  insertion cost is achieved. For projection of the desired end  state  onto 
the  surface,  time is selected as  the  independent  variable along the manifold. The  time 
along the one-dimensional path is monotonic and provides a  one-to-one  mapping along the 
trajectory, i.e., there is only one state  associated  with each time  along  the one-dimensional 
manifold. To ensure  an  adequate  resolution for the  time  variable along the  path, a loth 
order  interpolation scheme is  used with nodes selected once every day along the numerically 
integrated  path.  This proves to  be  an efficient method for both  storage  and  evaluation of 
the  representative manifold states over a given time  interval. 

Transfer to  an Lz Libration Point Orbit 

As an example of this process, consider the  direct  transfer  from  Earth  to a Lissajous 
orbit  in  the vicinity of the  Sun-Earth L:! point using a single lunar  gravity  assist.  The one- 
dimensional  manifold selected for this  analysis is plotted  in  Figure 3; the  coordinate  frame 
is centered  at  the  Earth  and  rotates  with  the  Earth  about  the  Sun, such that  the  z-axis is 
always directed along the line from the  Sun  to  the  Earth.  In  the figure, the  path representing 
the manifold extends from the  lunar  orbit  (just beyond the  lunar  encounter)  to  the  state 
on  Julian  date 2454560.0, approximately half way through  the first  revolution along the 
Lissajous trajectory.  The  square symbols  on the plot denote 10 day  intervals  originating at 
JD 2454380.0, just  after  the  lunar  encounter.  The  “nominal” LO1 point  at  JD 2454400.0 
is also marked.  This is the  initial guess for the fixed state, selected as a baseline to  initiate 
the  analysis.  Experience suggests this region along a one-dimensional  stable manifold to  be 
a  reasonable  approximation for the  location of an  insertion  point  that satisfies the  launch 
constraints for a competitively low cost. Note that, previous  analyses  in  this  problem have 
actually used the  z-axis crossing points for insertion  (roughly  corresponding  to JD 2454490 
in the  figure).  This choice  was based as much or1 the design process and available tools as 
on  the  dynanlical a n a l y ~ i s . ~ ~ ~ ~ ~ ~ ~  From the methodology  applied  here, the  solution  resulting 
from application of the differential corrections process is presented  in  Figure 4. In  this case, 
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an init,ial perigee of  200 krn altitude  and  an  inclination of 28.5 deg  results  in a transfer  with 
an LO1 cost of 1.93 m/s. 

To isolate the effects of the variations in the LO1 target  point location  on the LO1 
cost,  the  transfer  trajectory injection date is  fixed at some value that is within  the range 
identified for the giver1 nominal. After the  initial  trajectory is determined,  the LO1 target 
state variation scheme is applied to  this solution. The results of this  proccdure  are presented 
in Figure 5 for the direct  transfer case (i.e., a transfer  with no phasing  loops).  In  the figure, 
the LO1 maneuver cost is plotted as a function of the LO1 date for a series of transfer 
injection dates.  (To clarify the figure, the abscissa  corresponds to  the LO1 target  Julian 
date  minus 2454000.) Each  curve in the figure then  represents  the  variation  in LO1 cost 
for a specified transfer irljection date; for example, the curve  labeled 62.5 corresponds to 
solutions with  transfer  injection on JD 24543(62.5). The minimum LO1 cost determined by 
the LO1 target  state  variation  procedure for each given TTI  date curve is marked with a 
diamond.  These  minimums  are  connected by a dotted line to signify that a continuum of 
solutions is possible over this limited  range of transfer  injection dates. Note that  the overall 
minimum LO1 cost that results from this  procedure over the given range of injection and 
LO1 target  dates is 0.31 m/s on .TD 2454(412.058), corresponding to a transfer  injection date 
of JD 24543(63.764). As the TTI  date varies, the LO1 cost for a given target  state along 
the  representative manifold decreases to a minimum and  then increases  again, as seen along 
each curve in Figure 5. Note also that for TTI  dates near JD 2454363.764 (corresponding 
to the  solution curve  with the minimum  cost) the LO1 costs are fairly  constant over a 30 
to 40 day  range  from JD 2454380.0 to  JD 2454420.0. As the TTI date varies from this 
minimum  value,  the LO1 cost rises rapidly  and  the  variations along a given curve lose their 
linear nature. 

For  LO1 target  dates beyond JD 2454420.0, the LO1 cost begins to rise dramatically. 
To demonstrate  this  fact,  the lowest curve  in  Figure 5 corresponding to  the minimum LO1 
cost (associated  with TTI on JD 2454363.764) appears in Figure 6 for an expanded  range 
of LO1 target  dates  from JD 2454370.0 to 2454560.0. (Rcfer to Figure 3 for the correlation 
between the LO1 target  dates  and  positions  along  the  manifold.) Notice that, aside from the 
two “spikes”,  the LO1 cost is fairly constant over the  entire  range along the one-dimensional 
manifold. This  indicates  that  the precise location of the LO1 maneuver is not  as  critical as 
the selection of the  TTI  date in order to achieve a desirable  insertion  cost, at least for the 
direct  transfer case. 

It is speculated that  the large increases in LO1 cost around  JD 2454440 and 2454525 may 
be a function of the differential  correction process used to  obtain  the solutions. Near these 
locations,  it becomes increasingly difficult to determine a satisfactory  transfer. The reason 
for the difficulty is unclear, but may be a function of the geometry of the manifold surface 
(in  relation  to  the ecliptic  plane, for instance). Between the spikes, a second local minimum 
exists  near JD 2454480.0. This LO1 cost is actually 0.09 m/s lower than  the previous 
minimum. It is  likely that any science activities for the mission would be  underway at  this 
point;  thus,  to avoid any  maneuvers  in  this  region, the earlier local minimum is selected for 
analysis. 

LO1 Target  State  Variations  with  Phasing Loops 

Similar to  the  direct case, the LO1 target  state  variation  procedure is also applicable 
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to  transfers that include  multiple  phasing loops. The results  from  application of the one- 
dimensional manifold targeting  procedure  are  presented in Figure  7 for a transfer  with two 
phasing orbits prior to  the  lunar encounter.  Again, each curve  corresponds to a specific 
transfer  injection date  that is referenced to  JD 2454300. Solutions  along a single curve, 
then, represent the  relationship between LO1 cost and  the  position of the LO1 target  state 
(identified by the associated date). Note  again that  the lowest curve,  corresponding to 
the lowest  LO1 costs is fairly flat. As the TTI  date increases, the minimum LO1 cost 
along  each  curve  (denoted  with  diamond  symbols) reaches a minimum if TTI occurs  on 
JD 24543(37.3), followed  by a local maximum  corresponding to  TTI on JD 24543(39.5). 
Although it appears  that  there may be two separate  types of solutions,  there is, in  fact, 
only one  transfer  type represented  here,  with  continuous  solutions throughout  the valid 
launch  period. The minimum cost of 2.23 m/s corresponds to a solution  with an LO1 that 
occurs  on JD 2454401.308, and has a corresponding  transfer  injection date  on  JD 2454337.3. 
As seen previously, the lowest curve, the one that includes the  solution  with  tho minimunl 
cost, is very flat  in this region. However, as before, the cost begins to increase as  the LO1 
dates  approach JD 2454440, the region of the first “spike” seen in Figure 6. 

A comparison between the minimum cost solution,  as  indicated  in  Figure 7, and  the 
solution  corresponding  to  the  original  “nominal” LO1 location  on JD 2454400.058 appears 
in Figure 8. The original LO1 cost associated  with the  path  that includes two phasing loops 
is 30.35 m/s (denoted by the  dashed  line), while the  trajectory represented by the solid line 
in Figure  8  incorporates a “best” LO1 maneuver  magnitude of 2.23 m/s. So, application of 
this  targeting  algorithm reduces the cost of the new transfer by 28 m/s over the original 
solution.  Similar  results have been achieved for transfers that include  one and  three phasing 
loops  as well. 

Application  to  the GENESIS Trajectory Design 

If all goes according to schedule, in early 2001 the  GENESIS spacecraft will be  launched 
with  the goal of returning samples of the solar wind to  the  Earth for detailed  investigation 
into  the origins of the solar  system. The GENESIS trajectory includes a Lissajous orbit 
in the vicinity of the  Sun-Earth L1 point  (between the  Sun  and  Earth)  to  facilitate  the 
collection of particles  from  the  Sun over a two and a half year mission. Dynamical  systems 
theory is used in the design of the  GENESIS  trajectory6)10  (Figure 9) to determine  both 
the  transfer  to  the Lissajous,  as well as  the  return leg that  extends toward the  Sun-Earth 
L2 point  leading to a daytime  reentry over Utah. By exploiting  the  natural dynamics 
of the  Sun-Earth-Moon  system,  the  entire  trajectory  can  be  executed  with  just a single 
deterministic  maneuver at LOI, roughly three  months  after  launch. 

For application to  this mission, the one-dimensional  manifold targeting process is ex- 
tended to determine a more optimal location for the LO1 maneuver. Unlike the previous L2 

transfer case, the GENESIS  trajectory  incorporates a direct  transfer  out to  its L1 Lissajous, 
with no lunar  encounter.  This  actually  permits  a  broader region of the representative  man- 
ifold surface to be  investigated in the search for possible LO1 locations,  since  the  transfer is 
not  constrained by the  timing of the  lunar flyby. A series of one-dimensional trajectory  arcs 
associated  with the  appropriate revolutions  along the desired  Lissajous orbit,  then,  can  be 
numerically  computed that, taken  together,  approximates  a  two-dimensional  surface that 
reflects a stable manifold approaching  the  periodic reference orbit. A  subsection of this 
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Figure 9. GENESIS Trajectory for January 2001 Launch 

surface appears  in  Figure 10. The surface has  been constructed  from  sixty  trajectories,  and 
is bounded by the  trajectories labeled #140 along the lower edge of the  surface  to #a00 
along the  upper edge. Notice that, as in  Figure 1, the  surface  contracts as it  approaches 
the Lissajous orbit  and becomes  indistinguishable  from  the reference orbit  after roughly 
one  revolution  (about 180 days). As the surface evolves in  time, a smaller  subsection of the 
surface,  labeled  Region A, has been highlighted in the figure. The red lines in this region 
are  contours of constant  epoch,  beginning on JD 2451940 (January 30, 2001) and  extend- 
ing through  JD 2451975 (March 6, 2001). By utilizing  the manifold targeting  procedure 
individually  on each of the  sixty one-dimensional trajectories over the given time  frame, 
an  estimate of the LO1 cost necessary to  insert  onto  this  portion of the manifold surface is 
obtained. 

As in  the  examples of transfers  to Lq, the  transfer  trajectory  insertion  (TTI)  date  must 
be fixed to  isolate  the effects of changing the  date  corresponding  to  the LO1 target  state 
on  the LO1 maneuver cost. Therefore, a TTI  date on  January 7, 2001 (the opening of the 
launch  period) is selected for this  analysis, along with  constraints  on perigee and  inclination, 
i.e., a 185 km altitude perigee and a 28.5 deg orbital  inclination for launch  from  the  Eastern 
Test Range. The  results of the  targeting scheme  in  Region A for the  January  7  TTI  date 
appear  in  Figure 11. In  this figure, the  z-axis is the manifold ID  number, while the y- 
axis represents  epochs along the given trajectory. The color contours  in  the figure, then, 
correspond  to various levels of LO1  cost ranging  from 23 m/s  (dark  blue)  to  greater  than 
134 m/s (red).  There is a small  range of LO1 locations roughly through  the middle of the 
selected region that represent  acceptable LO1 costs, that is, under 40 m/s. By examining 
the  contour  plot,  it is immediately obvious that LO1 targets  states on trajectory  #I68 from 
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JD 2451940 through JD 2451960 are excellent candidates for possible  insertion  locations. 
For dates beyond JD 2451975, the cost rises again,  similar to  the  trends seen in  Figure 6. 

Therefore,  this  segment of the surface is bypassed in favor of a second region corresponding 
to  dates  JD 2452000 (March 31, 2001) through JD 2452060 (May 30, 2001). This section of 
the surface is labeled Region B and is depicted in Figure 12. (For  clarity,  earlier  portions of 
the surface have been removed from the figure to highlight the desired  region.) Notice that 
by this  point  in  time,  the  surface  has  contracted  substantially and  the individual tra.jectories 
are much less distinct.  It is not  surprising,  then,  that  application of the  targeting process 
results in broad  bands of opportunity  that  are  similar  in LO1 cost, as seen in  Figure 13. 
In  this case, a large region of acceptable LO1 costs (< 40 m/s)  exists between JD 2452000 
and  JD 2452045  over most of the  trajectories.  These  kinds of analyses  ultimately led to 
the selection of an LO1 location  on 2452030 (April 30, 2001) for the  nominal  GENESIS 
trajectory corresponding to a launch in January 2001. Although the final LO1 cost for the 
nominal mission is,  in  fact,  slightly  larger that  the minimum 23 m/s  due  to  other design 
factors, the  qualitative information  from this kind of surface targeting is particularly  useful 
in making better design decisions in regard to LO1 placement. 

CONCLUSIONS 

This manifold targeting  procedure is highly applicable to a variety of libration  point 
missions, such as the ones depicted  here.  This  process  has  proven useful in  the GENESIS 
mission design to determine a more optimal location for the Lissajous orbit  insertion ma- 
neuver. Extension of the one-dimensional  results to  the full two-dimensional  surface  should 
allow an  optimal LO1 location to be determined  through a search over the  entire manifold 
surface  in  one step, while maintaining  the  desired  characteristics of the  libration point orbit. 
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